Transversal homoclinic orbits in a transiently chaotic neural network.

نویسندگان

  • Shyan-Shiou Chen
  • Chih-Wen Shih
چکیده

We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics for Discrete-Time Cellular Neural Networks

This presentation investigates the dynamics of discrete-time cellular neural networks (DT-CNN). In contrast to classical neural networks that are mostly gradient-like systems, DT-CNN possesses both complete stability and chaotic behaviors as different parameters are considered. An energylike function which decreases along orbits of DT-CNN as well as the existence of a globally attracting set ar...

متن کامل

Chaos in PDEs and Lax Pairs of Euler Equations

Recently, the author and collaborators have developed a systematic program for proving the existence of homoclinic orbits in partial differential equations. Two typical forms of homoclinic orbits thus obtained are: (1) transversal homoclinic orbits, (2) Silnikov homoclinic orbits. Around the transversal homoclinic orbits in infinite-dimensional autonomous systems, the author was able to prove t...

متن کامل

Mel’nikov Analysis of Homoclinic Chaos in a Perturbed sine -Gordon Equation

We describe and characterize rigorously the chaotic behavior of the sine– Gordon equation. The existence of invariant manifolds and the persistence of homoclinic orbits for a perturbed sine–Gordon equation are established. We apply a geometric method based on Mel’nikov’s analysis to derive conditions for the transversal intersection of invariant manifolds of a hyperbolic point of the perturbed ...

متن کامل

Homoclinic Tubes in Nonlinear Schrödinger Equation under Hamiltonian Perturbations

The concept of a homoclinic tube was introduced by Silnikov 14) in a study on the structure of the neighborhood of a homoclinic tube asymptotic to an invariant torus σ under a diffeomorphism F in a finite dimensional phase space. The asymptotic torus is of the saddle type. The homoclinic tube consists of a doubly infinite sequence of tori {σj , j = 0,±1,±2, · · ·} in the transversal intersectio...

متن کامل

The Numerical Computation of Homoclinic Orbits for Maps

Transversal homoclinic orbits of maps are known to generate shift dynamics on a set with Cantor like structure. In this paper a numerical method is developed for computation of the corresponding homoclinic orbits. They are approximated by nite orbit segments subject to asymptotic boundary conditions. We provide a detailed error analysis including a shadowing type result by which one can infer t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2002